Pandas Session 3 Code For Video Click Fahad Hussain CS
Hi, Welcome to Fahad Hussain CS blog, do not forget to subscribe and follow the blog and YouTube channel Fahad Hussain CS
Code:
import pandas as pd
import numpy as np
obj = pd.Series(range(3), index=['a', 'b', 'c'])
index = obj.index
print(index)
print(index[-1:])
labels = pd.Index(np.arange(3))
print(labels)
obj2 = pd.Series([1.5, -2.5, 0], index=labels)
print(obj2)
print(obj2.index is labels)
data = {'State':['Khi','Lhr','Mul','Isl','Haz','Raw'],
'Year':[2000,2001,2002,2003,2004,2005],
'Pop':[1.5,1.6,2.5,4.2,3.5,1.9]}
frame1 = pd.DataFrame(data)
frame1.columns
print('State' in frame1.columns)
print(2003 in frame1.index)
Sdup_labels = pd.Index(['foo', 'foo', 'bar', 'bar'])
dup_labels
print(frame1[0::])
print(frame1[::])
print(frame1[0::-1])
print(frame1[0::1])
print(frame1.loc[:,['State']])
###Essential Functionality
obj = pd.Series([4.5, 7.2, -5.3, 3.6], index=['d', 'b', 'a', 'c'])
obj
obj2 = obj.reindex(['a', 'b', 'c', 'd', 'e'])
obj2
obj3 = pd.Series(['blue', 'purple', 'yellow'], index=[0, 2, 4])
print(obj3)
print(obj3.reindex(range(6), method='ffill'))
frame = pd.DataFrame(np.arange(9).reshape((3, 3)),
index=['a', 'c', 'd'],
columns=['Ohio', 'Texas', 'California'])
print(frame)
frame2 = frame.reindex(['a', 'b', 'c', 'd'])
print(frame2)
states = ['Texas', 'Utah', 'California']
frame.reindex(columns=states)
print(frame)
obj = pd.Series(np.arange(5.), index=['a', 'b', 'c', 'd', 'e'])
print(obj)
new_obj = obj.drop('c')
print(new_obj)
print(obj.drop(['d', 'c']))
data = pd.DataFrame(np.arange(16).reshape((4, 4)),
index=['Ohio', 'Colorado', 'Utah', 'New York'],
columns=['one', 'two', 'three', 'four'])
data
print(data.drop(['Colorado', 'Ohio']))
print(data)
print(data.drop('two', axis=1))
print(data.drop(['two', 'four'], axis='columns'))
####Indexing, Selection, and Filtering
obj = pd.Series(np.arange(4.), index=['a', 'b', 'c', 'd'])
print(obj)
print(obj['b'])
print(obj[1])
print(obj[2:4])
print(obj[['b', 'a', 'd']])
print(obj[[1, 3]])
print(obj[obj < 2])
print(obj['b':'c'])
data = pd.DataFrame(np.arange(16).reshape((4, 4)),
index=['Ohio', 'Colorado', 'Utah', 'New York'],
columns=['one', 'two', 'three', 'four'])
print(data)
print(data['two'])
print(data[['three', 'one']])
print(data[::1])
print(data[data['three'] > 5])
data < 5
data[data < 5] = 0
data
###Selection with loc and iloc
print(data.loc['Colorado', ['two', 'three']])
print(data)
print(data.iloc[2, [3, 0, 1]])
print(data.iloc[2])
print(data.iloc[[1, 2], [3, 0, 1]])
print(data.loc[:'Utah', 'two'])
print(data.iloc[:, :3][data.three > 5])
No comments:
Post a Comment
Fell free to write your query in comment. Your Comments will be fully encouraged.