Numy Session 5 Code For Video Click Fahad Hussain CS
import numpy as np
x_axis = np.linspace(-4, 4, 9)
y_axis = np.linspace(-5, 5, 11)
print(x_axis)
print(y_axis)
x_axis_1, y_axis_1 = np.meshgrid(x_axis, y_axis)
print("x_axis_1 = ")
print(x_axis_1)
print("y_axis_1 = ")
print(y_axis_1)
import numpy as np
na, nb = (5, 3)
a = np.linspace(1, 2, na)
b = np.linspace(1, 2, nb)
xa, xb = np.meshgrid(a, b)
print(xa)
print(xb)
import numpy as np
na, nb = (5, 3)
a = np.linspace(1, 2, na)
b = np.linspace(1, 2, nb)
xa, xb = np.meshgrid(a, b, sparse=True)
print(xa)
print(xb)
import matplotlib.pyplot as plt
xx, yy = np.meshgrid(x_axis, y_axis, sparse=True)
ellipse = xx * 2 + 4 * yy**2
plt.contourf(x_1, y_1, ellipse, cmap = 'jet')
plt.colorbar()
plt.show()
import numpy as np
import matplotlib.pyplot as plt
import numpy as np
a = np.arange(-4, 4, 0.1)
b = np.arange(-4, 4, 0.1)
#aa, bb = np.meshgrid(a, b, sparse=True)
c = np.sin(aa**2) / (a 2)
m = plt.contourf(a,b,c)
plt.show()
random_data = np.random.random((11, 9))
print(random_data)
plt.contourf(x_1, y_1, random_data, cmap = 'jet')
plt.colorbar()
plt.show()
sine = (np.sin(x_1**2 + y_1**2))/(x_1**2 + y_1**2)
plt.contourf(x_1, y_1, sine, cmap = 'jet')
plt.colorbar()
plt.show()
# Sample code for generation of Matrix indexing
import numpy as np
x = np.linspace(-4, 4, 9)
# numpy.linspace creates an array
# of 9 linearly placed elements between
# -4 and 4, both inclusive
y = np.linspace(-5, 5, 11)
# The meshgrid function returns
# two 2-dimensional arrays
x_1, y_1 = np.meshgrid(x, y)
x_2, y_2 = np.meshgrid(x, y, indexing = 'ij')
# The following 2 lines check if x_2 and y_2 are the
# transposes of x_1 and y_1 respectively
print("x_2 = ")
print(x_2)
print("y_2 = ")
print(y_2)
# np.all is Boolean and operator;
# returns true if all holds true.
print(np.all(x_2 == x_1.T))
print(np.all(y_2 == y_1.T))
import numpy as np
import matplotlib.pyplot as plt
a = np.arange(-10, 10, 0.1)
b = np.arange(-10, 10, 0.1)
xa, xb = np.meshgrid(a, b, sparse=True)
z = np.sin(xa**2 + xb**2) / (xa**2 + xb**2)
h = plt.contourf(a,b,z)
plt.show()
import numpy as np
import matplotlib.pyplot as plt
a = np.linspace(-5, 5, 5)
b = np.linspace(-5, 5, 11)
random_data = np.random.random((11, 5))
xa, xb = np.meshgrid(a, b)
plt.contourf(xa, xb, random_data, cmap = 'jet')
plt.colorbar()
plt.show()
import numpy as np
import matplotlib.pyplot as plt
a = np.linspace(-5, 5, 5)
b = np.linspace(-5, 5, 11)
random_data = np.random.random((11, 5))
xa, xb = np.meshgrid(a, b)
sine = (np.sin(xa**2 + xb**2))/(xa**2 + xb**2)
plt.contourf(xa, xb, sine, cmap = 'jet')
plt.colorbar()
plt.show()
from pylab import *
from mpl_toolkits.mplot3d import Axes3D
fig = figure()
ax = Axes3D(fig)
X = np.arange(-4, 4, 0.25)
Y = np.arange(-4, 4, 0.25)
X, Y = np.meshgrid(X, Y)
R = np.sqrt(X**2 + Y**2)
Z = np.sin(R)
ax.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap='hot')
show()
No comments:
Post a Comment
Fell free to write your query in comment. Your Comments will be fully encouraged.