Numy Session 3 Code For Video Click Fahad Hussain CS
#### Linear Algebra in numpy
import numpy as np
A = np.array([[6, 1, 1],
[4, -2, 5],
[2, 8, 7]])
print("Rank of A:", np.linalg.matrix_rank(A))
print("\nTrace of A:", np.trace(A))
print("\nDeterminant of A:", np.linalg.det(A))
print("\nInverse of A:\n", np.linalg.inv(A))
print("\nMatrix A raised to power 3:\n", np.linalg.matrix_power(A, 3))
import numpy as np
# coefficients
a = np.array([[1, 2], [3, 4]])
# constants
b = np.array([8, 18])
print("Solution of linear equations:", np.linalg.solve(a, b))
# The Dot Product is written using a central dot:
# a · b
# This means the Dot Product of a and b
# We can calculate the Dot Product of two vectors this way:
# dot product magnitudes and angle
# a · b = |a| × |b| × cos(?)
import numpy as np
product = np.dot(5, 4)
print("Dot Product of scalar values : ", product)
vector_a = 12
vector_b = 4
# a · b = |a| × |b| × cos(?)
product = np.dot(vector_a, vector_b)
print(product)
# This function returns the dot product of the two vectors. If the first argument is complex, then its conjugate is used for calculation.
# If the argument id is multi-dimensional array, it is flattened.
import numpy as np
vector_a = 2+ 3j
vector_b = 4 + 5j
product = np.vdot(vector_a, vector_b)
print("Dot Product : ", product)
#Inner product of two arrays.
a = np.array([1,4,0])
b = np.array([1,5,0])
np.inner(a, b)
#Compute the outer product of two vectors
x = np.array(['a', 'b', 'c'], dtype=object)
np.outer(x, [1, 2, 3])
# Matrix or vector norm.
# This function is able to return one of eight different matrix norms, or one of an infinite
# number of vector norms (described below), depending on the value of the ord parameter.
from numpy import linalg as LA
a = np.arange(9) - 4
print(a)
b = a.reshape((3, 3))
print(b)
print(LA.norm(a))
print(LA.norm(b))
print(LA.norm(b, 'fro'))
print(LA.norm(a, np.inf))
print(LA.norm(b, np.inf))
print(LA.norm(a, -np.inf))
print(LA.norm(b, -np.inf))
# Compute the condition number of a matrix.
# This function is capable of returning the condition number using one of Eight different norms,
from numpy import linalg as LA
a = np.array([[1, 0, -1], [0, 1, 0], [1, 0, 1]])
a
print(LA.cond(a))
print(LA.cond(a, 'fro'))
print(LA.cond(a, np.inf))
print(LA.cond(a, -np.inf))
print(LA.cond(a, 1))
print(LA.cond(a, -1))
print(LA.cond(a, 2))
print(LA.cond(a, -2))
from numpy.linalg import multi_dot
# Prepare some data
A = np.random.random((10000, 100))
B = np.random.random((100, 1000))
C = np.random.random((1000, 5))
D = np.random.random((5, 333))
# the actual dot multiplication
print(multi_dot([A, B, C, D]))
from numpy import linalg as fahad
# Creating an array using array
# function
a = np.array([[1, -2j], [2j, 5]])
print("Array is :",a)
# calculating an eigen value
# using eigh() function
c, d = fahad.eigh(a)
print("Eigen value is :", c)
print("Eigen value is :", d)
from numpy import linalg as fahad
# Creating an array using diag
# function
a = np.diag((1, 2, 3))
print("Array is :",a)
# calculating an eigen value
# using eig() function
c, d = fahad.eig(a)
print("Eigen value is :",c)
print("Eigen value is :",d)
No comments:
Post a Comment
Fell free to write your query in comment. Your Comments will be fully encouraged.